Effect of water temperature on cooling efficiency during hyperthermia in humans.

نویسندگان

  • C I Proulx
  • M B Ducharme
  • G P Kenny
چکیده

We evaluated the cooling rate of hyperthermic subjects, as measured by rectal temperature (T(re)), during immersion in a range of water temperatures. On 4 separate days, seven subjects (4 men, 3 women) exercised at 65% maximal oxygen consumption at an ambient temperature of 39 degrees C until T(re) increased to 40 degrees C (45.4 +/- 4.1 min). After exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14, or 20 degrees C until T(re) returned to 37.5 degrees C. No difference in cooling rate was observed between the immersions at 8, 14, and 20 degrees C despite the differences in the skin surface-to-water temperature gradient, possibly because of the presence of shivering at 8 and 14 degrees C. Compared with the other conditions, however, the rate of cooling (0.35 +/- 0.14 degrees C/min) was significantly greater during the 2 degrees C water immersion, in which shivering was seldom observed. This rate was almost twice as much as the other conditions (P < 0.05). Our results suggest that 2 degrees C water is the most effective immersion treatment for exercise-induced hyperthermia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of energy consumption reduction in multistage compression process and its solutions

During hot seasons the inlet temperature of Nitrogen increases, as a result compressor consumes more power for compressing a specific mass ratio of fluid and consequently total energy consumption of the compressor increases as well. In this research, a three stage centrifugal compressor with intercooler was modeled thermodynamically in order to decreases the energy consumption of the compressor...

متن کامل

An investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment

Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...

متن کامل

Studying lithium-ion battery packs cooling system using water-nanofluids composition

In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Effect of Ambient Condition on the Shower Cooling Tower in Four Type of Climates Condition

Water cooling by ambient takes place with two mechanisms of heat and mass transfer. Using packings at wet cooling towers has disadvantages such as obstruction, reduction of life expectancy and production of algae and fungi. In shower cooling towers types of towers packings are completely removed and water intake is in direct contact and heat transfer takes place in two ways of latent and sensib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 94 4  شماره 

صفحات  -

تاریخ انتشار 2003